Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiome Res Rep ; 2(1): 1, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38059211

RESUMEN

Recent years have seen the development of high-accuracy and high-throughput genetic manipulation techniques, which have greatly improved our understanding of genetically tractable microbes. However, challenges remain in establishing genetic manipulation techniques in novel organisms, owing largely to exogenous DNA defence mechanisms, lack of selectable markers, lack of efficient methods to introduce exogenous DNA and an inability of genetic vectors to replicate in their new host. In this review, we describe some of the techniques that are available for genetic manipulation of novel microorganisms. While many reviews exist that focus on the final step in genetic manipulation, the editing of recipient DNA, we particularly focus on the first step in this process, the transfer of exogenous DNA into a strain of interest. Examples illustrating the use of these techniques are provided for a selection of human gut bacteria in which genetic tractability has been established, such as Bifidobacterium, Bacteroides and Roseburia. Ultimately, this review aims to provide an information source for researchers interested in developing genetic manipulation techniques for novel bacterial strains, particularly those of the human gut microbiota.

2.
Nat Commun ; 14(1): 7305, 2023 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951938

RESUMEN

Knowledge of deeply-rooted non-ammonia oxidising Thaumarchaeota lineages from terrestrial environments is scarce, despite their abundance in acidic soils. Here, 15 new deeply-rooted thaumarchaeotal genomes were assembled from acidic topsoils (0-15 cm) and subsoils (30-60 cm), corresponding to two genera of terrestrially prevalent Gagatemarchaeaceae (previously known as thaumarchaeotal Group I.1c) and to a novel genus of heterotrophic terrestrial Thaumarchaeota. Unlike previous predictions, metabolic annotations suggest Gagatemarchaeaceae perform aerobic respiration and use various organic carbon sources. Evolutionary divergence between topsoil and subsoil lineages happened early in Gagatemarchaeaceae history, with significant metabolic and genomic trait differences. Reconstruction of the evolutionary mechanisms showed that the genome expansion in topsoil Gagatemarchaeaceae resulted from extensive early lateral gene acquisition, followed by progressive gene duplication throughout evolutionary history. Ancestral trait reconstruction using the expanded genomic diversity also did not support the previous hypothesis of a thermophilic last common ancestor of the ammonia-oxidising archaea. Ultimately, this study provides a good model for studying mechanisms driving niche partitioning between spatially related ecosystems.


Asunto(s)
Ecosistema , Suelo , Filogenia , Archaea/metabolismo , Genómica , Microbiología del Suelo , Oxidación-Reducción , Amoníaco/metabolismo
3.
Methods Mol Biol ; 2569: 189-211, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36083449

RESUMEN

Interpreting phylogenetic trees requires a root, which provides the direction of evolution and polarizes ancestor-descendant relationships. But inferring the root using genetic data is difficult, particularly in cases where the closest available outgroup is only distantly related, which are common for microbes. In this chapter, we present a workflow for estimating rooted species trees and the evolutionary history of the gene families that evolve within them using probabilistic gene tree-species tree reconciliation. We illustrate the pipeline using a small dataset of prokaryotic genomes, for which the example scripts can be run using modest computer resources. We describe the rooting method used in this work in the context or other rooting strategies and discuss some of the limitations and opportunities presented by probabilistic gene tree-species tree reconciliation methods.


Asunto(s)
Algoritmos , Genoma , Evolución Molecular , Modelos Genéticos , Filogenia , Células Procariotas
4.
Nat Commun ; 13(1): 4110, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840579

RESUMEN

The Terrestrial Miscellaneous Euryarchaeota Group has been identified in various environments, and the single genome investigated thus far suggests that these archaea are anaerobic sulfite reducers. We assemble 35 new genomes from this group that, based on genome analysis, appear to possess aerobic and facultative anaerobic lifestyles and may oxidise rather than reduce sulfite. We propose naming this order (representing 16 genera) "Lutacidiplasmatales" due to their occurrence in various acidic environments and placement within the phylum Thermoplasmatota. Phylum-level analysis reveals that Thermoplasmatota evolution had been punctuated by several periods of high levels of novel gene family acquisition. Several essential metabolisms, such as aerobic respiration and acid tolerance, were likely acquired independently by divergent lineages through convergent evolution rather than inherited from a common ancestor. Ultimately, this study describes the terrestrially prevalent Lutacidiciplasmatales and highlights convergent evolution as an important driving force in the evolution of archaeal lineages.


Asunto(s)
Proteínas Arqueales , Euryarchaeota , Archaea/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Euryarchaeota/genética , Evolución Molecular , Genoma Arqueal/genética , Filogenia , Sulfitos/metabolismo
6.
Nat Commun ; 11(1): 5494, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33127895

RESUMEN

Ammonia-oxidising archaea of the phylum Thaumarchaeota are important organisms in the nitrogen cycle, but the mechanisms driving their radiation into diverse ecosystems remain underexplored. Here, existing thaumarchaeotal genomes are complemented with 12 genomes belonging to the previously under-sampled Nitrososphaerales to investigate the impact of lateral gene transfer (LGT), gene duplication and loss across thaumarchaeotal evolution. We reveal a major role for gene duplication in driving genome expansion subsequent to early LGT. In particular, two large LGT events are identified into Nitrososphaerales and the fate of these gene families is highly lineage-specific, being lost in some descendant lineages, but undergoing extensive duplication in others, suggesting niche-specific roles. Notably, some genes involved in carbohydrate transport or coenzyme metabolism were duplicated, likely facilitating niche specialisation in soils and sediments. Overall, our results suggest that LGT followed by gene duplication drives Nitrososphaerales evolution, highlighting a previously under-appreciated mechanism of genome expansion in archaea.


Asunto(s)
Archaea/clasificación , Archaea/genética , Duplicación de Gen , Genoma Arqueal , Filogenia , Archaea/metabolismo , Ecosistema , Evolución Molecular , Transferencia de Gen Horizontal , Metagenómica , Proteoma
7.
Bio Protoc ; 10(7): e3575, 2020 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33659545

RESUMEN

Roseburia and Eubacterium species of the human gut microbiota play an important role in the maintaince of human health, partly by producing butyrate, the main energy source of our colonic epithelial cells. However, our knowledge of the biochemistry and physiology of these bacteria has been limited by a lack of genetic manipulation techniques. Conjugative transposons previously introduced into Roseburia species could not be easily modified, greatly limiting their applicability as genetic modification platforms. Modular plasmid shuttle vectors have previously been developed for Clostridium species, which share a taxonomic order with Roseburia and Eubacterium, raising the possibility that these vectors could be used in these organisms. Here, we describe an optimized conjugation protocol enabling the transfer of autonomously replicating plasmids from an E. coli donor strain into Roseburia inulinivorans and Eubacterium rectale. The modular nature of the plasmids and their ability to be maintained in the recipient bacterium by autonomous replication makes them ideal for investigating heterologous gene expression, and as a platform for other genetic tools including antisense RNA silencing or mobile group II interon gene disruption strategies.

8.
Anaerobe ; 59: 131-140, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31228669

RESUMEN

Commensal butyrate-producing bacteria in the Firmicutes phylum are abundant in the human intestine and are important for maintaining health. However, understanding of the metabolism and host interaction of these bacteria is limited by the lack of genetic modification techniques. Here we establish a protocol enabling the transfer of autonomously-replicating shuttle vectors by conjugative plasmid transfer from an Escherichia coli donor into representatives of an important sub-group of strictly anaerobic human colonic Firmicutes. Five different plasmid shuttle vectors were tested, each carrying a different origin of replication from Gram-positive bacteria. Plasmid pMTL83151 (pCB102 replicon) were successfully transferred into two strains of Eubacterium rectale, while pMTL83151 and pMTL82151 (pBP1 replicon) were transferred into Roseburia inulinivorans A2-194. Plasmids that carried a Streptococcus bovis JB1 glycoside hydrolase family 16 ß-(1,3-1,4)-glucanase gene were constructed and conjugated into Roseburia inulinivorans A2-194 and Eubacterium rectale T1-815, resulting in successful heterologous expression of this introduced enzymatic activity in these two strains of butyrate-producing Firmicutes.


Asunto(s)
Clostridiales/genética , Conjugación Genética , Eubacterium/genética , Expresión Génica , Técnicas de Transferencia de Gen , Genética Microbiana/métodos , Plásmidos , Escherichia coli/genética , Vectores Genéticos , Humanos , Transformación Bacteriana
9.
FEMS Microbiol Ecol ; 95(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30304332

RESUMEN

The diversity of the colonic microbial community has been linked with health in adults and diet composition is one possible determinant of diversity. We used carefully controlled conditions in vitro to determine how the complexity and multiplicity of growth substrates influence species diversity of the human colonic microbiota. In each experiment, five parallel anaerobic fermenters that received identical faecal inocula were supplied continuously with single carbohydrates (either arabinoxylan-oligosaccharides (AXOS), pectin or inulin) or with a '3-mix' of all three carbohydrates, or with a '6-mix' that additionally contained resistant starch, ß-glucan and galactomannan as energy sources. Inulin supported less microbial diversity over the first 6 d than the other two single substrates or the 3- and 6-mixes, showing that substrate complexity is key to influencing microbiota diversity. The communities enriched in these fermenters did not differ greatly at the phylum and family level, but were markedly different at the species level. Certain species were promoted by single substrates, whilst others (such as Bacteroides ovatus, LEfSe P = 0.001) showed significantly greater success with the mixed substrate. The complex polysaccharides such as pectin and arabinoxylan-oligosaccharides promoted greater diversity than simple homopolymers, such as inulin. These findings suggest that dietary strategies intended to achieve health benefits by increasing gut microbiota diversity should employ complex non-digestible substrates and substrate mixtures.


Asunto(s)
Colon/microbiología , Carbohidratos de la Dieta/análisis , Microbioma Gastrointestinal , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biodiversidad , Colon/química , Carbohidratos de la Dieta/metabolismo , Heces/microbiología , Fermentación , Humanos
10.
Environ Microbiol ; 20(1): 324-336, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29159997

RESUMEN

Ruminococcus bromii is a dominant member of the human colonic microbiota that plays a 'keystone' role in degrading dietary resistant starch. Recent evidence from one strain has uncovered a unique cell surface 'amylosome' complex that organizes starch-degrading enzymes. New genome analysis presented here reveals further features of this complex and shows remarkable conservation of amylosome components between human colonic strains from three different continents and a R. bromii strain from the rumen of Australian cattle. These R. bromii strains encode a narrow spectrum of carbohydrate active enzymes (CAZymes) that reflect extreme specialization in starch utilization. Starch hydrolysis products are taken up mainly as oligosaccharides, with only one strain able to grow on glucose. The human strains, but not the rumen strain, also possess transporters that allow growth on galactose and fructose. R. bromii strains possess a full complement of sporulation and spore germination genes and we demonstrate the ability to form spores that survive exposure to air. Spore formation is likely to be a critical factor in the ecology of this nutritionally highly specialized bacterium, which was previously regarded as 'non-sporing', helping to explain its widespread occurrence in the gut microbiota through the ability to transmit between hosts.


Asunto(s)
Colon/microbiología , Rumen/microbiología , Ruminococcus/metabolismo , Esporas Bacterianas , Animales , Metabolismo de los Hidratos de Carbono , Bovinos , Niño , Humanos , Masculino , Microbiota , Complejos Multiproteicos , Ruminococcus/aislamiento & purificación , Ruminococcus/ultraestructura , Almidón/metabolismo
12.
mBio ; 6(5): e01058-15, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26419877

RESUMEN

UNLABELLED: Ruminococcus bromii is a dominant member of the human gut microbiota that plays a key role in releasing energy from dietary starches that escape digestion by host enzymes via its exceptional activity against particulate "resistant" starches. Genomic analysis of R. bromii shows that it is highly specialized, with 15 of its 21 glycoside hydrolases belonging to one family (GH13). We found that amylase activity in R. bromii is expressed constitutively, with the activity seen during growth with fructose as an energy source being similar to that seen with starch as an energy source. Six GH13 amylases that carry signal peptides were detected by proteomic analysis in R. bromii cultures. Four of these enzymes are among 26 R. bromii proteins predicted to carry dockerin modules, with one, Amy4, also carrying a cohesin module. Since cohesin-dockerin interactions are known to mediate the formation of protein complexes in cellulolytic ruminococci, the binding interactions of four cohesins and 11 dockerins from R. bromii were investigated after overexpressing them as recombinant fusion proteins. Dockerins possessed by the enzymes Amy4 and Amy9 are predicted to bind a cohesin present in protein scaffoldin 2 (Sca2), which resembles the ScaE cell wall-anchoring protein of a cellulolytic relative, R. flavefaciens. Further complexes are predicted between the dockerin-carrying amylases Amy4, Amy9, Amy10, and Amy12 and two other cohesin-carrying proteins, while Amy4 has the ability to autoaggregate, as its dockerin can recognize its own cohesin. This organization of starch-degrading enzymes is unprecedented and provides the first example of cohesin-dockerin interactions being involved in an amylolytic system, which we refer to as an "amylosome." IMPORTANCE: Fermentation of dietary nondigestible carbohydrates by the human colonic microbiota supplies much of the energy that supports microbial growth in the intestine. This activity has important consequences for health via modulation of microbiota composition and the physiological and nutritional effects of microbial metabolites, including the supply of energy to the host from short-chain fatty acids. Recent evidence indicates that certain human colonic bacteria play keystone roles in degrading nondigestible substrates, with the dominant but little-studied species Ruminococcus bromii displaying an exceptional ability to degrade dietary resistant starches (i.e., dietary starches that escape digestion by host enzymes in the upper gastrointestinal tract because of protection provided by other polymers, particle structure, retrogradation, or chemical cross-linking). In this report, we reveal the unique organization of the amylolytic enzyme system of R. bromii that involves cohesin-dockerin interactions between component proteins. While dockerins and cohesins are fundamental to the organization of cellulosomal enzyme systems of cellulolytic ruminococci, their contribution to organization of amylases has not previously been recognized and may help to explain the starch-degrading abilities of R. bromii.


Asunto(s)
Amilasas/metabolismo , Multimerización de Proteína , Ruminococcus/enzimología , Almidón/metabolismo , Secuencias de Aminoácidos , Amilasas/genética , Perfilación de la Expresión Génica , Humanos , Proteoma/análisis , Ruminococcus/aislamiento & purificación
13.
Gut Microbes ; 5(1): 74-82, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24637591

RESUMEN

It has become clear in recent years that the human intestinal microbiota plays an important role in maintaining health and thus is an attractive target for clinical interventions. Scientists and clinicians have become increasingly interested in assessing the ability of probiotics and prebiotics to enhance the nutritional status of malnourished children, pregnant women, the elderly, and individuals with non-communicable disease-associated malnutrition. A workshop was held by the International Scientific Association for Probiotics and Prebiotics (ISAPP), drawing on the knowledge of experts from industry, medicine, and academia, with the objective to assess the status of our understanding of the link between the microbiome and under-nutrition, specifically in relation to probiotic and prebiotic treatments for under-nourished individuals. These discussions led to four recommendations:   (1) The categories of malnourished individuals need to be differentiated To improve treatment outcomes, subjects should first be categorized based on the cause of malnutrition, additional health-concerns, differences in the gut microbiota, and sociological considerations. (2) Define a baseline "healthy" gut microbiota for each category Altered nutrient requirement (for example, in pregnancy and old age) and individual variation may change what constitutes a healthy gut microbiota for the individual. (3) Perform studies using model systems to test the effectiveness of potential probiotics and prebiotics against these specific categories These should illustrate how certain microbiota profiles can be altered, as members of different categories may respond differently to the same treatment. (4) Perform robust well-designed human studies with probiotics and/or prebiotics, with appropriate, defined primary outcomes and sample size These are critical to show efficacy and understand responder and non-responder outcomes. It is hoped that these recommendations will lead to new approaches that combat malnutrition. This report is the result of discussion during an expert workshop titled "How do the microbiota and probiotics and/or prebiotics influence poor nutritional status?" held during the 10th Meeting of the International Scientific Association for Probiotics and Prebiotics (ISAPP) in Cork, Ireland from October 1-3, 2012. The complete list of workshop attendees is shown in Table 1.


Asunto(s)
Desnutrición/tratamiento farmacológico , Prebióticos/análisis , Probióticos/administración & dosificación , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Humanos , Masculino , Desnutrición/metabolismo , Microbiota , Embarazo , Adulto Joven
14.
PLoS One ; 8(7): e68919, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23935906

RESUMEN

Some Eubacterium and Roseburia species are among the most prevalent motile bacteria present in the intestinal microbiota of healthy adults. These flagellate species contribute "cell motility" category genes to the intestinal microbiome and flagellin proteins to the intestinal proteome. We reviewed and revised the annotation of motility genes in the genomes of six Eubacterium and Roseburia species that occur in the human intestinal microbiota and examined their respective locus organization by comparative genomics. Motility gene order was generally conserved across these loci. Five of these species harbored multiple genes for predicted flagellins. Flagellin proteins were isolated from R. inulinivorans strain A2-194 and from E. rectale strains A1-86 and M104/1. The amino-termini sequences of the R. inulinivorans and E. rectale A1-86 proteins were almost identical. These protein preparations stimulated secretion of interleukin-8 (IL-8) from human intestinal epithelial cell lines, suggesting that these flagellins were pro-inflammatory. Flagellins from the other four species were predicted to be pro-inflammatory on the basis of alignment to the consensus sequence of pro-inflammatory flagellins from the ß- and γ- proteobacteria. Many fliC genes were deduced to be under the control of σ(28). The relative abundance of the target Eubacterium and Roseburia species varied across shotgun metagenomes from 27 elderly individuals. Genes involved in the flagellum biogenesis pathways of these species were variably abundant in these metagenomes, suggesting that the current depth of coverage used for metagenomic sequencing (3.13-4.79 Gb total sequence in our study) insufficiently captures the functional diversity of genomes present at low (≤1%) relative abundance. E. rectale and R. inulinivorans thus appear to synthesize complex flagella composed of flagellin proteins that stimulate IL-8 production. A greater depth of sequencing, improved evenness of sequencing and improved metagenome assembly from short reads will be required to facilitate in silico analyses of complete complex biochemical pathways for low-abundance target species from shotgun metagenomes.


Asunto(s)
Bacterias/crecimiento & desarrollo , Flagelina/metabolismo , Mediadores de Inflamación/metabolismo , Intestinos/microbiología , Microbiota , Adulto , Anciano , Secuencia de Aminoácidos , Bacterias/genética , Sitios de Unión , Simulación por Computador , Electroforesis en Gel de Poliacrilamida , Heces/microbiología , Flagelina/química , Flagelina/genética , Flagelina/aislamiento & purificación , Orden Génico/genética , Sitios Genéticos/genética , Genoma Bacteriano/genética , Genómica , Humanos , Interleucina-8/metabolismo , Metagenoma , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Movimiento , Regiones Promotoras Genéticas/genética , Ribosomas/metabolismo , Alineación de Secuencia
15.
Pharmacol Res ; 69(1): 52-60, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23147033

RESUMEN

Diet is a major factor driving the composition and metabolism of the colonic microbiota. The amount, type and balance of the main dietary macronutrients (carbohydrates, proteins and fats) have a great impact on the large intestinal microbiota. The human colon contains a dense population of bacterial cells that outnumber host cells 10-fold. Bacteroidetes, Firmicutes and Actinobacteria are the three major phyla that inhabit the human large intestine and these bacteria possess a fascinating array of enzymes that can degrade complex dietary substrates. Certain colonic bacteria are able to metabolise a remarkable variety of substrates whilst other species carry out more specialised activities, including primary degradation of plant cell walls. Microbial metabolism of dietary carbohydrates results mainly in the formation of short chain fatty acids and gases. The major bacterial fermentation products are acetate, propionate and butyrate; and the production of these tends to lower the colonic pH. These weak acids influence the microbial composition and directly affect host health, with butyrate the preferred energy source for the colonocytes. Certain bacterial species in the colon survive by cross-feeding, using either the breakdown products of complex carbohydrate degradation or fermentation products such as lactic acid for growth. Microbial protein metabolism results in additional fermentation products, some of which are potentially harmful to host health. The current 'omic era promises rapid progress towards understanding how diet can be used to modulate the composition and metabolism of the gut microbiota, allowing researchers to provide informed advice, that should improve long-term health status.


Asunto(s)
Bacterias/metabolismo , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Metagenoma/fisiología , Animales , Dieta , Fermentación/fisiología , Humanos , Metagenoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...